Oceans and atmosphere

See also: Origin of the world's oceans

Graph showing range of estimated partial pressureof atmospheric oxygen through geologic time 

Earth is often described as having had three atmospheres. The first atmosphere, captured from the solar nebula, was composed of light (atmophile) elements from the solar nebula, mostly hydrogen and helium. A combination of the solar wind and Earth's heat would have driven off this atmosphere, as a result of which the atmosphere is now depleted of these elements compared to cosmic abundances. After the impact which created the moon, the molten Earth released volatile gases; and later more gases were released by volcanoes, completing a second atmosphere rich in greenhouse gases but poor in oxygen.  Finally, the third atmosphere, rich in oxygen, emerged when bacteria began to produce oxygen about 2.8 Ga.

In early models for the formation of the atmosphere and ocean, the second atmosphere was formed by outgassing of volatiles from the Earth's interior. Now it is considered likely that many of the volatiles were delivered during accretion by a process known as impact degassing in which incoming bodies vaporize on impact. The ocean and atmosphere would, therefore, have started to form even as the Earth formed. The new atmosphere probably contained water vapor, carbon dioxide, nitrogen, and smaller amounts of other gases.

Planetesimals at a distance of 1 astronomical unit (AU), the distance of the Earth from the Sun, probably did not contribute any water to the Earth because the solar nebula was too hot for ice to form and the hydration of rocks by water vapor would have taken too long.The water must have been supplied by meteorites from the outer asteroid belt and some large planetary embryos from beyond 2.5 AU.Comets may also have contributed. Though most comets are today in orbits farther away from the Sun than Neptune, computer simulations show that they were originally far more common in the inner parts of the solar system.

As the Earth cooled, clouds formed. Rain created the oceans. Recent evidence suggests the oceans may have begun forming as early as 4.4 Ga. By the start of the Archean eon, they already covered much of the Earth. This early formation has been difficult to explain because of a problem known as the faint young Sun paradox. Stars are known to get brighter as they age, and at the time of its formation the Sun would have been emitting only 70% of its current power. Thus, the Sun has become 30% brighter in the last 4.5 billion years.Many models indicate that the Earth would have been covered in ice.A likely solution is that there was enough carbon dioxide and methane to produce a greenhouse effect. The carbon dioxide would have been produced by volcanoes and the methane by early microbes. Another greenhouse gas, ammonia, would have been ejected by volcanos but quickly destroyed by ultraviolet radiation.

Comments

Popular posts from this blog

First post in Big Rip Theory

Introduction