2nd part of The History of BIG BANG THEORY
During the 1930s other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including the Milne model the oscillatory universe (originally suggested by Friedmann, but advocated by Albert Einstein and Richard Tolman and Fritz Zwicky's tired light hypothesi
After World War II, two distinct possibilities emerged. One was Fred Hoyle's steady state model, whereby new matter would be created as the universe seemed to expand. In this model the universe is roughly the same at any point in time.The other was Lemaître's Big Bang theory, advocated and developed by George Gamow, who introduced big bang nucleosynthesis (BBN) and whose associates, Ralph Alpher and Robert Herman, predicted the CMB. Ironically, it was Hoyle who coined the phrase that came to be applied to Lemaître's theory, referring to it as "this big bang idea" during a BBC Radio broadcast in March 1949. For a while, support was split between these two theories. Eventually, the observational evidence, most notably from radio source counts, began to favor Big Bang over Steady State. The discovery and confirmation of the CMB in 1964 secured the Big Bang as the best theory of the origin and evolution of the universe Much of the current work in cosmology includes understanding how galaxies form in the context of the Big Bang, understanding the physics of the universe at earlier and earlier times, and reconciling observations with the basic theory.
In 1968 and 1970 Roger Penrose, Stephen Hawking, and George F. R. Ellis published papers where they showed that mathematical singularities were an inevitable initial condition of general relativistic models of the Big Bang. Then, from the 1970s to the 1990s, cosmologists worked on characterizing the features of the Big Bang universe and resolving outstanding problems. In 1981, Alan Guth made a breakthrough in theoretical work on resolving certain outstanding theoretical problems in the Big Bang theory with the introduction of an epoch of rapid expansion in the early universe he called "inflation". Meanwhile, during these decades, two questions in observational cosmology that generated much discussion and disagreement were over the precise values of the Hubble Constant and the matter-density of the universe (before the discovery of dark energy, thought to be the key predictor for the eventual fate of the universe).
In the mid-1990s, observations of certain globular clusters appeared to indicate that they were about 15 billion years old, which conflicted with most then-current estimates of the age of the universe (and indeed with the age measured today). This issue was later resolved when new computer simulations, which included the effects of mass loss due to stellar winds, indicated a much younger age for globular clusters. While there still remain some questions as to how accurately the ages of the clusters are measured, globular clusters are of interest to cosmology as some of the oldest objects in the universe.
Significant progress in Big Bang cosmology has been made since the late 1990s as a result of advances in telescope technology as well as the analysis of data from satellites such as COBE,the Hubble Space Telescope and WMAP. Cosmologists now have fairly precise and accurate measurements of many of the parameters of the Big Bang model, and have made the unexpected discovery that the expansion of the universe appears to be accelerating.
Comments
Post a Comment